
 UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

UDDI Version 2.0 Data Structure Reference
UDDI Open Draft Specification 8 June 2001

This version:
http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf

Latest version:
http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf

Editors (alphabetically):

David Ehnebuske, IBM
Dan Rogers, Microsoft
Claus von Riegen, SAP

Contributors (alphabetically):
Tom Bellwood, IBM
Andy Harris, i2 Technologies
Denise Ho, Ariba
Yin-Leng Husband, Compaq
Alan Karp, HP
Keisuke Kibakura, Fujitsu
Jeff Lancelle, Verisign
Sam Lee, Oracle
Sean MacRoibeaird, Sun
Barbara McKee, IBM
Tammy Nordan, Compaq
Dan Rogers, Microsoft
Christine Tomlinson, Sun
Cafer Tosun, SAP

http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/DataStructure-V2.00-Open-20010608.doc
http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

2

Copyright © 2001 by Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax,
Inc., Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc., Intel Corporation, International Business
Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc., and
VeriSign, Inc. All Rights Reserved.

These documents are provided by the companies named above ("Licensors") under the following license. By
using and/or copying this document, or the document from which this statement is linked, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the document from which this
statement is linked, in any medium for any purpose and without fee or royalty under copyrights is hereby
granted, provided that you include the following on ALL copies of the document, or portions thereof, that you
use:

1. A link to the original document.

2. An attribution statement: “Copyright © 2001 by Accenture, Ariba, Inc., Commerce One, Inc., Compaq
Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc., Intel
Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP AG,
Sun Microsystems, Inc., and VeriSign, Inc. All Rights Reserved.”

If the Licensors own any patents or patent applications which that may be required for implementing and using
the specifications contained in the document in products that comply with the specifications, upon written
request, a non-exclusive license under such patents shall be granted on reasonable and non-discriminatory
terms.

THIS DOCUMENT IS PROVIDED "AS IS," AND LICENSORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

LICENSORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

3

Contents
1 TERMINOLOGY ..5

2 INTRODUCTION..5
2.1 SERVICE DISCOVERY..5

2.1.1 Five data types...5
3 OVERALL DESIGN PRINCIPLES...6

3.1 UNIQUE IDENTIFIERS...6
3.2 CONTAINMENT..7

4 DATA STRUCTURE NOTATION...7

5 THE BUSINESSENTITY STRUCTURE..8
5.1 STRUCTURE SPECIFICATION..8
5.2 SUBSTRUCTURE BREAKDOWN..8

5.2.1 discoveryURLs...9
5.2.1.1 discoveryURL... 9

5.2.2 name...10
5.2.3 contacts ..10

5.2.3.1 contact.. 10
5.2.3.2 address... 11
5.2.3.3 addressLine ... 12

5.2.4 businessServices ..12
5.2.5 identifierBag ..12
5.2.6 categoryBag...13

6 THE BUSINESSSERVICE STRUCTURE..14
6.1 STRUCTURE SPECIFICATION ...14
6.2 SUBSTRUCTURE BREAKDOWN ...14

6.2.1 bindingTemplates ..15
7 THE BINDINGTEMPLATE STRUCTURE ..16

7.1 STRUCTURE SPECIFICATION..16
7.2 SUBSTRUCTURE BREAKDOWN..16

7.2.1 accessPoint ..17
7.2.2 hostingRedirector ..18
7.2.3 tModelInstanceDetails ..18

7.2.3.1 tModelInstanceInfo... 18
7.2.3.2 instanceDetails .. 19
7.2.3.3 overviewDoc... 19

8 THE TMODEL STRUCTURE..21
8.1 TWO MAIN USES..21

8.1.1 Defining the technical fingerprint...21
8.1.2 Defining an abstract namespace reference..21

8.2 STRUCTURE SPECIFICATION..22
8.3 SUBSTRUCTURE BREAKDOWN..22

9 THE PUBLISHERASSERTION STRUCTURE..24
9.1 STRUCTURE SPECIFICATION ...24
9.2 SUBSTRUCTURE BREAKDOWN ...24

10 APPENDIX A: USING IDENTIFIERS ...25
10.1 THE IDENTIFIER DILEMMA..25

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

4

10.2 IDENTIFIER CHARACTERISTICS ...25
10.2.1 Using identifiers...26
10.2.2 Structure Specification ..27

11 APPENDIX B: USING CATEGORIZATION ...28
11.1 STRUCTURE SPECIFICATION ...28

12 APPENDIX C: RESPONSE MESSAGE REFERENCE...30
12.1 ASSERTIONSTATUSREPORT..30

12.1.1 Sample..30
12.2 AUTHTOKEN..30

12.2.1 Sample..30
12.3 BINDINGDETAIL ..31

12.3.1 Sample..31
12.4 BUSINESSDETAIL...31

12.4.1 Sample..31
12.5 BUSINESSDETAILEXT ...31

12.5.1 Sample..31
12.6 BUSINESSLIST..32

12.6.1 Sample..32
12.7 PUBLISHERASSERTIONS..32

12.7.1 Sample..32
12.8 REGISTEREDINFO ..33

12.8.1 Sample..33
12.9 RELATEDBUSINESSESLIST..33

12.9.1 Sample..33
12.10 SERVICEDETAIL..34

12.10.1 Sample ...34
12.11 SERVICELIST...34

12.11.1 Sample ...34
12.12 TMODELDETAIL...34

12.12.1 Sample ...35
12.13 TMODELLIST ..35

12.13.1 Sample ...35
13 APPENDIX D: DATA FIELD LENGTHS..36

14 APPENDIX E: STRUCTURED ADDRESS EXAMPLE ...37

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

5

1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119.

2 Introduction

The programmatic interface provided for interacting with systems that follow the Universal Description
Discovery & Integration (UDDI) specifications make use of Extensible Markup Language (XML) and a
related technology called Simple Object Access Protocol (SOAP), which is a specification for using
XML in simple message based exchanges.

The UDDI Version 2.0 API Specification defines approximately 40 SOAP messages that are used to
perform inquiry and publishing functions against any UDDI compliant service registry. This document
outlines the details of each of the XML structures associated with these messages.

2.1 Service Discovery
The purpose of UDDI compliant registries is to provide a service discovery platform on the World Wide
Web. Service discovery is related to being able to advertise and locate information about different
technical interfaces exposed by different parties. Services are interesting when you can discover them,
determine their purpose, and then have software that is equipped for using a particular type of Web
service complete a connection and derive benefit from a service.

A UDDI compliant registry provides an information framework for describing services exposed by any
entity or business. In order to promote cross platform service description that is suitable to a “black-
box1” Web environment, this description is rendered in cross-platform XML.

2.1.1 Five data types

The information that makes up a registration consists of five data structure types. This division by
information type provides simple partitions to assist in the rapid location and understanding of the
different information that makes up a registration.

The five core types are shown in figure 1.

These five types make up the complete amount of information provided within the UDDI service
description framework. Each of these XML structures contains a number of data fields2 that serve either
a business or technical descriptive purpose. Explaining each of these structures and the meaning and
placement of each field is the primary purpose of this document.

These structures are defined in the UDDI Version 2.0 API schema. The schema defines approximately
25 requests and 15 responses, each of which contain these structures, references to these structures,
or summary versions of these structures. In this document we first explain the core structures, and then
provide descriptions of the individual structures used for the request/response XML SOAP interface.

1 The term “black box” in this context implies that the descriptive information found in a UDDI compliant registry is provided in a
neutral format that allows any kind of service, without regard to a given services platform requirements or technology requirements.
UDDI provides a framework for describing any kind of service, and allows storage of as much detail about a service and its
implementation as desired.
2 In XML vernacular, fields are called either elements or attributes.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

6

Figure 1

3 Overall Design Principles

Each of the five structure types is used to express specific types of data, arranged in the relationship
shown in Figure 1. A particular instance of an individual fact or set of related facts is expressed using
XML according to the definition of these core types. For instance, two separate businesses may publish
information about the Web services they offer, whether these services are entry points for interfacing
with accounting systems, or even services that allow customers to query the status of a factory order.
Each business, and the corresponding service descriptions (both logical and technical descriptions) all
exist as separate instances of data within a UDDI registry.

3.1 Unique identifiers
The individual facts about a business, its services, technical information, or even information about
specifications for services are kept separate, and are accessed individually by way of unique identifiers,
or keys. A UDDI registry assigns these unique identifiers when information is first saved, and these
identifiers can be used later as keys to access the specific data instances on demand.

Each unique identifier generated by a UDDI registry takes the form of a Universally Unique ID3 (UUID).
Technically, a UUID is a hexadecimal string that has been generated according to a very exacting
algorithm that is sufficiently precise as to prevent any two UUIDs from ever being generated in
duplicate4.

3 The terms “Universally Unique Identifier” (UUID) and “Globally Unique Identifier” (GUID) are used synonymously in technical
documentation. In the remainder of this document, the term UUID is used.
4 The UUID structure and generation algorithm is described in the ISO/IEC 11578:1996 standard (see www.iso.ch).

publisherAssertion: Information about
a relationship between two parties,
asserted by one of both

tModel: Descriptions of specifications for
services or taxonomies. Basis for
technical fingerprints

bindingTemplate data contains
references to tModels. These
tModels designate the
interface specifications for a
service

 bindingTemplate: Technical
information about a service entry point
and construction specs

 businessService: Descriptive
information about a particular service

 businessEntity: Information about the
party who publishes information about a
family of services

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

7

3.2 Containment
The individual instance data managed by a UDDI registry are sensitive to the parent/child relationships
found in the XML schema. This same containment relationship is seen in figure 1 for the core
structures. The businessEntity structure contains one or more unique businessService structures.
Similarly, individual businessService structures contain specific instances of bindingTemplate data,
which in turn contains information that includes pointers to specific instances of tModel structures.

It is important to note that no single instance of a core structure type is ever “contained” by more than
one parent structure. This means that only one specific businessEntity structure (identified by its unique
key value) will ever contain or be used to express information about a specific instance of a
businessService structure (also identified by its own unique key value).

References, on the other hand, operate differently. We can see an example of this in figure 1 where the
bindingTemplate structures contain references to unique instances of tModel structures. References
can be repeated within any number of the core typed data instances such that many references to a
single unique instance are allowed.

Determining what is a reference to an instance of a core data type and what is a key for a core data
type within a specific instance is straightforward. There are five core data types, and instances of each
of these types are identified by unique keys. The businessKey found within the businessEntity structure
is a key, and not a reference. Similarly, the serviceKey and bindingKey values found respectively within
the businessService and bindingTemplate structures are keys. The same holds true for the tModelKey
value found within the tModel structure. The publisherAssertion’s key is logically the concatenation of all
of its elements.

References on the other hand, occur in several places, especially for tModels. When tModels are
referenced, as seen within a bindingTemplate structure, these occur within a list structure designed for
the purpose of holding references to tModels. This list, not being one of the five core data types, is not
keyed as an individual instance. Rather, its own identity is derived from the parent structure that
contains it – and it cannot be separated. Thus any key values directly contained in structures that are
not themselves one of the five core structure types are references. Examples include tModelKey values
found in lists within bindingTemplate and categorization and identification schemes – in which context
the tModel represents a uniquely identifiable namespace reference and qualifier.

4 Data Structure Notation

Data structures are described by substructure breakdowns in tables of the following form.

Field Name Description Data Type

Length

Optional fields
are written in
normal font

Required fields
are written in
bold font

Description of the field’s meaning
and whether it’s

�� An attribute or
an element

�� Repeatable or
not

Possible Data
Types include

�� structure

�� string

�� UUID

If the field’s data type is
string, the field’s length is
given here in Unicode
characters

Most of the data structures are also given in their XML Schema representation (W3C XML Schema
Candidate Recommendation, October 2000). Please use the UDDI XML Schema as the definitive
technical reference, if needed.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

8

5 The businessEntity structure

The businessEntity structure represents all known information about a business or entity that publishes
descriptive information about the entity as well as the services that it offers. From an XML standpoint,
the businessEntity is the top-level data structure that accommodates holding descriptive information
about a business or entity. Service descriptions and technical information are expressed within a
businessEntity by a containment relationship.

5.1 Structure specification
<element name = "businessEntity">
 <complexType>
 <sequence>
 <element ref = "discoveryURLs" minOccurs = "0"/>
 <element ref = "name" maxOccurs = "unbounded"/>
 <element ref = "description" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <element ref = "contacts" minOccurs = "0"/>
 <element ref = "businessServices" minOccurs = "0"/>
 <element ref = "identifierBag" minOccurs = "0"/>
 <element ref = "categoryBag" minOccurs = "0"/>
 </sequence>
 <attribute ref = "businessKey" use = "required"/>
 <attribute ref = "operator"/>
 <attribute ref = "authorizedName">
 </complexType>
</element>

5.2 Substructure breakdown

Field Name Description
Data
Type

Length

businessKey Attribute. This is the unique identifier for a given instance of
a businessEntity structure.

UUID 41

authorizedName Attribute. This is the recorded name of the individual that
published the businessEntity data. This data is generated
by the controlling operator and should not be supplied
within save_business operations.

string 255

operator Attribute. This is the certified name of the UDDI registry site
operator that manages the master copy of the
businessEntity data. The controlling operator records this
data at the time data is saved. This data is generated and
should not be supplied within save_business operations.

string 255

discoveryURLs Optional element. This is a list of Uniform Resource
Locators (URL) that point to alternate, file based service
discovery mechanisms. Each recorded businessEntity
structure is automatically assigned a URL that returns the
individual businessEntity structure. URL search is provided
via find_business call.

structure

name Required repeating element. These are the human
readable names recorded for the businessEntity, adorned
with a unique xml:lang value to signify the language that
they are expressed in. Name search is provided via
find_business call. Names may not be blank.

string 255

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

9

description Optional repeating element. One or more short business
descriptions. One description is allowed per national
language code supplied.

string 255

contacts Optional element. This is an optional list of contact
information.

structure

businessServices Optional element. This is a list of one or more logical
business service descriptions.

structure

identifierBag Optional element. This is an optional list of name-value
pairs that can be used to record identifiers for a
businessEntity. These can be used during search via
find_business.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a businessEntity with specific
taxonomy information (e.g. industry, product or geographic
codes). These can be used during search via
find_business.

structure

5.2.1 discoveryURLs

The discoveryURLs structure is used to hold pointers to URL addressable discovery documents. The
expected retrieval mechanism for URLs referenced in the data within this structure is HTTP-GET. The
expected return document is not defined. Rather, a framework for establishing convention is provided,
and two such conventions are defined within UDDI behaviors. It is hoped that other conventions come
about and use this structure to accommodate alternate means of discovery.5

Field Name

Description Data Type

Length

discoveryURL Attribute qualified repeating element holding strings that
represent web addressable (via HTTP-GET) discovery
documents.

string
w/attributes

255

5.2.1.1 discoveryURL

Each individual discovery URL consists of an attribute whose value designates the URL use type
convention, and a string, found within the body of the element. Each time a businessEntity
structure is saved via a call to save_business, the UDDI Operator Site will generate one URL. The
generated URL will point to an instance of either a businessEntity or businessEntityExt structure,
and the useType attribute of the discoveryURL will be set to either "businessEntity" or
"businessEntityExt" according to the data type found while processing the save_business
message. The discoveryURLs collection will be augmented so that it includes this generated URL.
This URL can then be used to retrieve a specific instance of a businessEntity, since the XML
returned will be formatted as a normal businessDetail message.

Field Name

Description

Data
Type

Length

5 An example of an alternate form of service discovery is seen in the ECO Framework as defined by the commerce.net initiative. A
convention to provide pointers to ECO discovery entry points could take advantage of the structures provided in discoveryURLs by
adopting the useType value “ECO”.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

10

useType Required attribute that designates the name of the
convention that the referenced document follows. Two
reserved convention values are “businessEntity” and
“businessEntityExt”. URLs qualified with these values
should point to XML documents of the same type as the
useType value.

string 255

Example: An example of the generated data for a given businessEntity might look similar to the
following:

<discoveryURLs>
<discoveryURL useType=”businessEntity”>
http://www.someOperator?businessKey=BE3D2F08-CEB3-11D3-849F-0050DA1803C0
</discoveryURL>

<discoveryURLs>

5.2.2 name

The publishing of several names, e.g. for romanization purposes, is supported. In order to signify the
language that the names are expressed in, they carry unique xml:lang values. Not more than one
name element may omit specifying its language. Names passed in this way will be assigned the default
language code of the registering party. This default language code is established at the time that
publishing credentials are established with an individual Operator Site. If no default language is
provisioned at the time a publisher signs up, the operator can adopt an appropriate default language
code.

The same mechanism applies to the name element within the businessService structure.

5.2.3 contacts

The contacts structure provides a way for information to be registered with a businessEntity record so
that someone that finds the information can make human contact for any purpose. Since the
information held within the UDDI Operator Sites is freely available, some care should be taken when
considering the amount of contact information to register. Electronic mail addresses in particular may
be the greatest concern if you are sensitive to receiving unsolicited mail.

The contacts structure itself is a simple collection of contact structures. You’ll find that there are many
collections in the UDDI Version 2.0 API schema. Like the discoveryURLs structure – which is a
container for one or more discoveryURL structures, the contacts structure is a simple container where
one or more contact structures reside.

5.2.3.1 contact

The contact structure lets you record contact information for a person. This information can consist
of one or more optional elements, along with a person’s name. Contact information exists by
containment relationship alone, and no mechanisms for tracking individual contact instances is
provided by UDDI specifications.

For transliteration purposes (e.g. romanization) the suggested approach is to file multiple contacts.

Field Name

Description Data Type

Length

http://www.someoperator/?businessKey=BE3D2F08-CEB3-11D3-849F-0050DA1803C0

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

11

useType Optional attribute that is used to describe the type of
contact in freeform text. Suggested examples include
“technical questions”, “technical contact”, “establish
account”, “sales contact”, etc.

string 255

description Optional element. Zero or more language-qualified6
descriptions of the reason the contact should be used.

string 255

personName Required element. Contacts should list the name of the
person or name of the job role that will be available behind
the contact. Examples of roles include “administrator” or
“webmaster”.

string 255

phone Optional repeating element. Used to hold telephone
numbers for the contact. This element can be adorned
with an optional useType attribute for descriptive
purposes. If more than one phone element is saved,
useType attributes are required on each.

string
w/attributes

50

email Optional repeating element. Used to hold email addresses
for the contact. This element can be adorned with an
optional useType attribute for descriptive purposes. If
more than one email element is saved, useType attributes
are required on each.

string
w/attributes

255

address Optional repeating element. This structure represents the
printable lines suitable for addressing an envelope.

structure

5.2.3.2 address

The address structure is a simple list of addressLine elements within the address container. Each
addressLine element is a simple string. UDDI compliant registries are responsible for preserving
the order of any addressLine data provided. Address structures also have three optional attributes.
The useType describes the address’ type in freeform text. The sortCode values are not significant
within a UDDI registry, but may be used by user interfaces that present contact information in some
ordered fashion using the values provided in the sortCode attribute. The tModelKey references a
tModel that specifies the meaning of keyName keyValue pairs given in subordinate addressLine
elements. For a description of how to use tModels in order to give the simple addressLine list
structure and meaning, see Appendix E: Structured Address Example.

Field Name

Description Data Type

Length

useType Optional attribute that is used to describe the type of
address in freeform text. Suggested examples include
“headquarters”, “sales office”, “billing department”, etc.

string 255

6 All fields named description behave the same way and are subject to the same language identifier rules as described in the XML
usage appendix found in the UDDI programmers API specification. Embedded HTML is prohibited in description fields.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

12

sortCode Optional attribute that can be used to drive the behavior of
external display mechanisms that sort addresses. The
suggested values for sortCode include numeric ordering
values (e.g. 1, 2, 3), alphabetic character ordering values
(e.g. a, b, c) or the first n positions of relevant data within
the address.

string 10

tModelKey Optional attribute. This is the unique key reference that
implies that the keyName keyValue pairs given by
subsequent addressLine elements are to be interpreted by
the taxonomy associated with the tModel that is
referenced.

string 255

417

addressLine Optional repeating element containing the actual address
in freeform text. If the address element contains a
tModelKey, these addressLine elements are to be
adorned each with an optional keyName keyValue
attribute pair. Together with the tModelKey, keyName and
keyValue qualify the addressLine in order to describe its
meaning.

string
w/attributes

80

5.2.3.3 addressLine

AddressLine elements contain string data with a line length limit of 80 character positions. Each
addressLine element can be adorned with two optional descriptive attributes, keyName and
keyValue. Both attributes must be present in each address line if a tModelKey is assigned to the
address structure. By doing this, the otherwise arbitrary use of address lines becomes structured.
Together with the address’ tModelKey, keyName and keyValue virtually build a keyedReference
that represents an address line qualifier, given by the referenced tModel. See Appendix E for an
example how structured addresses can be represented. When no tModelKey is provided for the
address structure, the keyName and keyValue attributes can be used without restrictions, for
example, to provide descriptive information for each addressLine by using the keyName attribute.
Since both the keyName and the keyValue attributes are optional, address line order is significant
and will always be returned by the UDDI compliant registry in the order originally provided during a
call to save_business.

5.2.4 businessServices

The businessServices structure provides a way for describing information about families of services.
This simple collection accessor contains zero or more businessService structures and has no other
associated structures.

5.2.5 identifierBag

The identifierBag element allows businessEntity or tModel structures to include information about
common forms of identification such as D-U-N-S� numbers, tax identifiers, etc. This data can be used
to signify the identity of the businessEntity, or can be used to signify the identity of the publishing party.
Including data of this sort is optional, but when used greatly enhances the search behaviors exposed
via the find_xx messages defined in the UDDI Version 2.0 API Specification. For a full description of the
structures involved in establishing an identity, see Appendix A: Using Identifiers.

7 The data type for tModelKey allows for using URN values in a later revision. In the current release, the key is a generated UUID.
Design work around managing duplicate urn claims will allow user supplied URN keys on tModels in the future.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

13

5.2.6 categoryBag

The categoryBag element allows businessEntity, businessService and tModel structures to be
categorized according to any of several available taxonomy based classification schemes. Operator
Sites automatically provide validated categorization support for three taxonomies that cover industry
codes (via NAICS), product and service classifications (via UNSPC) and geography (via ISO 3166).
Including data of this sort is optional, but when used greatly enhances the search behaviors exposed
by the find_xx messages defined in the UDDI Version 2.0 API Specification. For a full description of
structures involved in establishing categorization information, see Appendix B: Using categorization.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

14

6 The businessService structure

The businessService structures each represent a logical service classification. The name of the
element includes the term “business” in an attempt to describe the purpose of this level in the service
description hierarchy. Each businessService structure is the logical child of a single businessEntity
structure. The identity of the containing (parent) businessEntity is determined by examining the
embedded businessKey value. If no businessKey value is present, the businessKey must be
obtainable by searching for a businessKey value in any parent structure containing the
businessService. Each businessService element contains descriptive information in business terms
outlining the type of technical services found within each businessService element.

In some cases, businesses would like to share or reuse services, e.g. when a large enterprise
publishes separate businessEntity structures. This can be established by using the businessService
structure as a projection to an already published businessService.

Any businessService projected in this way is not managed as a part of the referencing businessEntity,
but centrally as a part of the referenced businessEntity. This means that changes of the
businessService by the referenced businessEntity are automatically valid for the service projections
done by referencing businessEntity structures.

In order to specify both referenced and referencing businessEntity structures correctly, service
projections can only be published by a save_business message with the referencing businessKey
present in the businessEntity structure and both the referenced businessKey and the referenced
businessService present in the businessService structure.

6.1 Structure Specification
<element name = "businessService">
 <complexType>
 <sequence>
 <element ref = "name" maxOccurs = "unbounded"/>
 <element ref = "description" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <element ref = "bindingTemplates"/>
 <element ref = "categoryBag" minOccurs = "0"/>
 </sequence>
 <attribute ref = "serviceKey" use = "required"/>
 <attribute ref = "businessKey"/>
 </complexType>
</element>

6.2 Substructure Breakdown

Field Name

Description
Data
Type

Length

businessKey This attribute is optional when the businessService data is
contained within a fully expressed parent that already
contains a businessKey value.

If the businessService data is rendered into XML and has
no containing parent that has within its data a
businessKey, the value of the businessKey that is the
parent of the businessService is required to be provided.
This behavior supports the ability to browse through the
parent-child relationships given any of the core elements
as a starting point. The businessKey may differ from the
publishing businessEntity’s businessKey to allow service
projections.

UUID 41

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

15

serviceKey This is the unique key for a given businessService. When
saving a new businessService structure, pass an empty
serviceKey value. This signifies that a UUID value is to be
generated. To update an existing businessService
structure, pass the UUID value that corresponds to the
existing service. If this data is received via an inquiry
operation, the serviceKey values may not be blank.

When saving a new or updated service projection, pass
the serviceKey of the referenced businessService
structure.

UUID 41

name Required repeating element. These are the human
readable names recorded for the businessService,
adorned with a unique xml:lang value to signify the
language that they are expressed in. Name search is
provided via find_service call. Names may not be blank.

When saving a new or updated service projection, pass
the exact name of the referenced businessService, here.

string 255

description Optional element. Zero or more language-qualified text
descriptions of the logical service family.

string 255

bindingTemplates This structure holds the technical service description
information related to a given business service family.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a businessService with specific
taxonomy information (e.g. industry, product or
geographic codes). These can be used during search via
find_service. See categoryBag under businessEntity for a
full description.

structure

6.2.1 bindingTemplates

The bindingTemplates structure is a container for zero or more bindingTemplate structures. This
simple collection accessor has no other associated structure.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

16

7 The bindingTemplate structure

Technical descriptions of Web services are accommodated via individual contained instances of
bindingTemplate structures. These structures provide support for determining a technical entry point or
optionally support remotely hosted services, as well as a lightweight facility for describing unique
technical characteristics of a given implementation. Support for technology and application specific
parameters and settings files are also supported.

Since UDDI’s main purpose is to enable description and discovery of Web Service information, it is the
bindingTemplate that provides the most interesting technical data.

Each bindingTemplate structure has a single logical businessService parent, which in turn has a single
logical businessEntity parent.

7.1 Structure specification
<element name = "bindingTemplate">
 <complexType>
 <sequence>
 <element ref = "description" minOccurs = "0" maxOccurs = "unbounded"/>
 <choice>
 <element ref = "accessPoint" minOccurs = "0"/>
 <element ref = "hostingRedirector" minOccurs = "0"/>
 </choice>
 <element ref = "tModelInstanceDetails"/>
 </sequence>
 <attribute ref = "bindingKey" use = "required"/>
 <attribute ref = "serviceKey"/>
 </complexType>
</element>

7.2 Substructure breakdown

Field Name

Description Data Type

Length

bindingKey This is the unique key for a given bindingTemplate.
When saving a new bindingTemplate structure,
pass an empty bindingKey value. This signifies that
a UUID value is to be generated. To update an
existing bindingTemplate structure, pass the UUID
value that corresponds to the existing
bindingTemplate instance. If this data is received via
an inquiry operation, the bindingKey values may not
be blank.

UUID 41

serviceKey This attribute is optional when the bindingTemplate
data is contained within a fully expressed parent that
already contains a serviceKey value. If the
bindingTemplate data is rendered into XML and has
no containing parent that has within its data a
serviceKey, the value of the serviceKey that is the
ultimate containing parent of the bindingTemplate is
required to be provided. This behavior supports the
ability to browse through the parent-child
relationships given any of the core elements as a
starting point.

UUID 41

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

17

description Optional repeating element. Zero or more language-
qualified text descriptions of the technical service
entry point.

string 255

accessPoint Required attribute qualified element8. This element
is a text field that is used to convey the entry point
address suitable for calling a particular Web service.
This may be a URL, an electronic mail address, or
even a telephone number. No assumptions about
the type of data in this field can be made without first
understanding the technical requirements
associated with the Web service9.

string
w/attributes

255

hostingRedirector Required element if accessPoint not provided. This
element is adorned with a bindingKey attribute,
giving the redirected reference to a different
bindingTemplate. If you query a bindingTemplate
and find a hostingRedirector value, you should
retrieve that bindingTemplate and use it in place of
the one containing the hostingRedirector data.

empty
w/attributes

tModelInstanceDetails This structure is a list of zero or more
tModelInstanceInfo elements. This data, taken in
total, should form a distinct fingerprint that can be
used to identify compatible services.

structure

7.2.1 accessPoint

The accessPoint element is an attribute-qualified pointer to a service entry point. The notion of service
at the metadata level seen here is fairly abstract and many types of entry points are accommodated.

A single attribute is provided (named URLType). The purpose of the URLType attribute is to facilitate
searching for entry points associated with a particular type of entry point. An example might be a
purchase order service that provides three entry points, one for HTTP, one for SMTP, and one for FAX
ordering. In this example, we’d find a businessService element that contains three bindingTemplate
entries, each with identical data with the exception of the accessPoint value and URLType value.

The valid values for URLType are:

�� mailto: designates that the accessPoint string is formatted as an electronic mail address
reference, for example, mailto:purch@fabrikam.com.

�� http: designates that the accessPoint string is formatted as an HTTP compatible Uniform
Resource Locator (URL), for example, http://www.fabrikam.com/purchasing.

�� https: designates that the accessPoint string is formatted as a secure HTTP compatible URL,
for example https://www.fabrikam.com/purchasing.

�� ftp: designates that the accessPoint string is formatted as a FTP directory address, for
example ftp://ftp.fabrikam.com/public.

�� fax: designates that the accessPoint string is formatted as a telephone number that will
connect to a facsimile machine, for example 1 425 555 5555.

8 One of accessPoint or hostingRedirector is required.
9 The content of the structure named tModelInstanceDetails that is found within a bindingTemplate structure serves as a technical
fingerprint. This fingerprint is a series of references to uniquely keyed specifications and/or concepts. To build a new service that is
compatible with a tModel, the specifications must be understood. To register a service compatible with a specification, reference a
tModelKey within the tModelInstanceDetails data for a bindingTemplate instance.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

18

�� phone: designates that the accessPoint string is formatted as a telephone number that will
connect to human or suitable voice or tone response based system, for example 1 425 555
5555.

�� other: designates that the accessPoint string is formatted as some other address format.
When this value is used, one or more of the tModel signatures found in the tModelInstanceInfo
collection must imply that a particular format or transport type is required.

7.2.2 hostingRedirector

The hostingRedirector element is used to designate that a bindingTemplate entry is a pointer to a
different bindingTemplate entry. The value in providing this facility is seen when a business or entity
wants to expose a service description (e.g. advertise that they have a service available that suits a
specific purpose) that is actually a service that is described in a separate bindingTemplate record. This
might occur when a service is remotely hosted (hence the name of this element), or when many service
descriptions could benefit from a single service description.

The hostingRedirector element has a single attribute and no element content. The attribute is a
bindingKey value that is suitable within the same UDDI registry instance for querying and obtaining the
bindingDetail data that is to be used.

More on the hostingRedirector can be found in the appendices for the UDDI Version 2.0 API
Specification.

7.2.3 tModelInstanceDetails

This structure is a simple accessor container for one or more tModelInstanceInfo structures. When
taken as a group, the data that is presented in a tModelInstanceDetails structure forms a technically
descriptive fingerprint by virtue of the unordered list of tModelKey references contained within this
structure. What this means in English is that when someone registers a bindingTemplate (within a
businessEntity structure), it will contain one or more references to specific and identifiable specifications
that are implied by the tModelKey values provided with the registration. During an inquiry for a service,
an interested party could use this information to look for a specific bindingTemplate that contains a
specific tModel reference, or even a set of tModel references. By registering a specific fingerprint in this
manner, a software developer can readily signify that they are compatible with the specifications
implied in the tModelKey elements exposed in this manner.

7.2.3.1 tModelInstanceInfo

A tModelInstanceInfo structure represents the bindingTemplate instance specific details for a single
tModel by reference.

Field Name

Description

Data
Type

Length

tModelKey Required Attribute. This is the unique key reference that
implies that the service being described has
implementation details that are specified by the
specifications associated with the tModel that is referenced

string 255

description Optional repeating element. This is one or more language
qualified text descriptions that designate what role a tModel
reference plays in the overall service description.

string 255

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

19

instanceDetails Optional element. This element can be used when tModel
reference specific settings or other descriptive information
are required to either describe a tModel specific component
of a service description or support services that require
additional technical data support (e.g. via settings or other
handshake operations)

structure

7.2.3.2 instanceDetails

This structure holds service instance specific information that is required to either understand the
service implementation details relative to a specific tModelKey reference, or to provide further
parameter and settings support. If present, this element should not be empty. Because no single
contained element is required in the schema description, this rule is called out here for clarity.

Field Name

Description

Data
Type

Length

description Optional repeating element. This language-qualified text
element is intended for holding a description of the purpose
and/or use of the particular instanceDetails entry.

string 255

overviewDoc Optional element. Used to house references to remote
descriptive information or instructions related to proper use
of a bindingTemplate technical sub-element.

structure

instanceParms Optional element. Used to contain settings parameters or a
URL reference to a file that contains settings or parameters
required to use a specific facet of a bindingTemplate
description. If used to house the parameters themselves,
the suggested content is a namespace qualified XML string
– using a namespace outside of the UDDI schema. If used
to house a URL pointer to a file, the suggested format is
URL that is suitable for retrieving the settings or parameters
via HTTP-GET.

string 255

7.2.3.3 overviewDoc

This optional structure is provided as a placeholder for metadata that describes overview
information about a particular tModel use within a bindingTemplate.

Field Name

Description

Data
Type

Length

description Optional repeating element. This language-qualified string
is intended to hold a short descriptive overview of how a
particular tModel is to be used.

string 255

overviewURL Optional element. This string data element is to be used to
hold a URL reference to a long form of an overview
document that covers the way a particular tModel specific
reference is used as a component of an overall web service
description. The suggested format is a URL that is suitable
for retrieving an HTML based description via a web
browser or HTTP-GET operation.

string 255

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

20

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

21

8 The tModel structure

Being able to describe a Web service and then make the description meaningful enough to be useful
during searches is an important UDDI goal. Another goal is to provide a facility to make these
descriptions useful enough to learn about how to interact with a service that you don’t know much
about. In order to do this, there needs to be a way to mark a description with information that
designates how it behaves, what conventions it follows, or what specifications or standards the service
is compliant with. Providing the ability to describe compliance with a specification, concept, or even a
shared design is one of the roles that the tModel structure fills.

The tModel structure takes the form of keyed metadata (data about data). In a general sense, the
purpose of a tModel within the UDDI registry is to provide a reference system based on abstraction.
Thus, the kind of data that a tModel represents is pretty nebulous. In other words, a tModel registration
can define just about anything, but in the current revision, two conventions have been applied for using
tModels: as sources for determining compatibility and as keyed namespace references.

The information that makes up a tModel is quite simple. There’s a key, a name, an optional description,
and then a URL that points somewhere – presumably somewhere where the curious can go to find out
more about the actual concept represented by the metadata in the tModel itself.

8.1 Two main uses
There are two places within a businessEntity registration that you’ll find references to tModels. In this
regard, tModels are special. Whereas the other data within the businessEntity (e.g. businessService
and bindingTemplate data) exists uniquely with one uniquely keyed instance as a member of one
unique parent businessEntity, tModels are used as references. This means that you’ll find references to
specific tModel instances in many businessEntity structures.

8.1.1 Defining the technical fingerprint

The primary role that a tModel plays is to represent a technical specification. An example might be a
specification that outlines wire protocols, interchange formats and interchange sequencing rules.
Examples can be seen in the RosettaNet Partner Interface Processes 10 specification, the Open
Applications Group Integration Specification11 and various Electronic Document Interchange (EDI)
efforts.

Software that communicates with other software across some communication medium invariably
adheres to some pre-agreed specifications. In situations where this is true, the designers of the
specifications can establish a unique technical identity within a UDDI registry by registering information
about the specification in a tModel.

Once registered in this way, other parties can express the availability of Web services that are
compliant with a specification by simply including a reference to the tModel identifier (called a
tModelKey) in their technical service descriptions bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a particular
specification. Once you know the proper tModelKey value, you can find out whether a particular
business or entity has registered a Web service that references that tModel key. In this way, the
tModelKey becomes a technical fingerprint that is unique to a given specification.

8.1.2 Defining an abstract namespace reference

The other place where tModel references are used is within the identifierBag, categoryBag, address
and publisherAssertion structures that are used to define organizational identity and various

10 See www.rosettanet.org
11 See www.openapplications.org

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

22

classifications. Used in this context, the tModel reference represents a relationship between the keyed
name-value pairs to the super-name, or namespace within which the name-value pairs are meaningful.

An example of this can be seen in the way a business or entity can express the fact that their US tax
code identifier (which they are sure they are known by to their partners and customers) is a particular
value. To do this, let’s assume that we find a tModel that is named “US Tax Codes”, with a description
“United States business tax code numbers as defined by the United States Internal Revenue Service”.
In this regard, the tModel still represents a specific concept – but instead of being a technical
specification, it represents a unique area within which tax code ID’s have a particular meaning.

Once this meaning is established, a business can use the tModelKey for the tax code tModel as a
unique reference that qualifies the remainder of the data that makes up an entry in the identifierBag
data.

To get things started, the UDDI Operator Sites have registered a number of useful tModels, including
NAICS (an industry code taxonomy), UNSPC (a product and service category code taxonomy), and
ISO 3166 (a geographical region code taxonomy).

8.2 Structure specification
<element name = "tModel">
 <complexType>
 <sequence>
 <element ref = "name"/>
 <element ref = "description" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <element ref = "overviewDoc" minOccurs = "0"/>
 <element ref = "identifierBag" minOccurs = "0"/>
 <element ref = "categoryBag" minOccurs = "0"/>
 </sequence>
 <attribute ref = "tModelKey" use = "required"/>
 <attribute ref = "operator"/>
 <attribute ref = "authorizedName"/>
 </complexType>
</element>

8.3 Substructure breakdown

Field Name

Description
Data
Type

Length

tModelKey Required Attribute. This is the unique key for a given
tModel structure. When saving a new tModel structure,
pass an empty tModelKey value. This signifies that a UUID
value is to be generated. To update an existing tModel
structure, pass the tModelKey value that corresponds to an
existing tModel instance.

string 255

authorizedName Attribute. This is the recorded name of the individual that
published the tModel data. This data is calculated by the
controlling operator and should not be supplied within
save_tModel operations.

string 255

operator Attribute. This is the certified name of the UDDI registry site
operator that manages the master copy of the tModel data.
The controlling operator records this data at the time data is
saved. This data is calculated and should not be supplied
within save_tModel operations.

string 255

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

23

name Required element. This is the name recorded for the
tModel. Name search is provided via find_tModel call.
Names may not be blank, and should be meaningful to
someone who looks at the tModel

string 255

description Optional repeating element. One or more short language-
qualified descriptions. One description is allowed per
national language code supplied.

string 255

overviewDoc Optional element. Used to house references to remote
descriptive information or instructions related to the tModel.
See the substructure breakdown for overviewDoc in
section The bindingTemplate structure.

structure

identifierBag Optional element. This is an optional list of name-value
pairs that can be used to record identification numbers for a
tModel. These can be used during search via find_tModel.
See the full description of this element in the businessEntity
section of this document and in Appendix A: Using
Identifiers.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a tModel with specific taxonomy
information (e.g. industry, product or geographic codes).
These can be used during search via find_tModel. See the
full description of this element in the businessEntity section
of this document and in Appendix B: Using categorization

structure

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

24

9 The publisherAssertion structure

Many businesses, like large enterprises or marketplaces, are not effectively represented by a single
businessEntity, since their description and discovery are likely to be diverse. As a consequence,
several businessEntity structures can be published, representing individual subsidiaries of a large
enterprise or individual participants of a marketplace. Nevertheless, they still represent a more or less
coupled community and would like to make some of their relationships visible in their UDDI
registrations. Therefore, two related businesses use the xx_publisherAssertion messages, publishing
assertions of business relationships.

In order to eliminate the possibility that one publisher claims a relationship between both businesses
that is in fact not reciprocally recognized, both publishers have to agree that the relationship is valid by
publishing their own publisherAssertion. Therefore, both publishers have to publish exactly the same
information. When this happens, the relationship becomes visible. More detailed information is given in
the appendices for the UDDI Version 2.0 API Specification.

In the case that a publisher is responsible for both businesses, the relationship automatically becomes
visible after publishing just one of both assertions that make up the relationship.

The publisherAssertion structure consists of the three elements fromKey (the first businessKey), toKey
(the second businessKey) and keyedReference. The keyedReference designates the asserted
relationship type in terms of a keyName keyValue pair within a tModel, uniquely referenced by a
tModelKey.

9.1 Structure Specification
<element name = "publisherAssertion">
 <complexType>
 <sequence>
 <element ref = "fromKey"/>
 <element ref = "toKey"/>
 <element ref = "keyedReference"/>
 </sequence>
 </complexType>
</element>

9.2 Substructure Breakdown

Field Name

Description Data Type

Length

fromKey Required element. This is the unique key reference to
the first businessEntity the assertion is made for.

UUID 41

toKey Required element. This is the unique key reference to
the second businessEntity the assertion is made for.

UUID 41

keyedReference Required element. This designates the relationship type
the assertion is made for, represented by the included
tModelKey and described by the included keyName
keyValue pair.

empty
w/attributes

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

25

10 Appendix A: Using Identifiers

10.1 The identifier dilemma
One of the design goals associated with the UDDI registration data is the ability to mark information
with identifiers. The purpose of identifiers in the UDDI registration data is to allow others to find the
published information using more formal identifiers such as D-U-N-S� numbers12, Global Location
Numbers (GLN)13, tax identifiers, or any other kind of organizational identifiers, regardless of whether
these are private or shared.

When you look at an identifier, such as a D-U-N-S� number, it is not always immediately apparent what
the identifier represents. For instance, consider the following identifier:

123-45-6789
Standing alone, we could try and guess what this combination of digits and formatting characters
implies. However, if we knew that this was a United States Social Security number, we would then
have a better context and understand that this string, while still not clear, at least identifies one or more
persons, perhaps even a living one. Expressed as a name / value pair, the identifier might then look like
the following:

United States Social Security Number, 123-45-6789
Even with this new information, a search mechanism based on loosely qualified pairs (name of
identifier type, identifier value), two different parties might spell or format either part of the information
differently, and with the end result being a diminished value for searching.

The goal, of course, is to define a simple mechanism that disambiguates the conceptual meanings
behind identifiers and exposes them in ways that are reliable and predictable enough to use, and yet
are simple enough structurally to be easy to understand and extend.

10.2 Identifier characteristics
When we look at various types of simple identifiers, some common desirable characteristics become
evident. In general terms, a system of identifiers that are used to facilitate searching need to be:

�� Resolvable: Identifiers can be used in a way that allows the meaning of the identifier to be
determined. For instance, a popular business identifier mechanism is provided by Dun &
Bradstreet in the form of D-U-N-S� numbers. When you know an organization’s D-U-N-S�
number, you can use this to reliably distinguish one organization from another.

�� Distinguishable: Identifiers can be used in a way that you can tell what kind of identifier is
being used, or you can specify what kind of identifier you are using to search for something.
This means you can tell that two identifiers are the same kind of identifier or are different types
(e.g. two D-U-N-S� numbers, versus a tax identifier or an organizational membership number.)

�� Extensible: The way that searchable identifiers are defined should be easy to extend so that
anyone can register another type of identifier without having to create costly or difficult
infrastructure. The search mechanisms that use identifiers should be able to accommodate
newly registered types without any changes to software, and anyone should be able to start
using the new types immediately.

 With this in mind, let’s look at the way that identifiers are used in the UDDI data structures.

12 D-U-N-S� Numbers are provided by Dun & Bradstreet. See http://www.dnb.com.
13 The Global Location Number system is defined in the EAN UCC system (http://www.ean-int.org/locations.html).

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

26

10.2.1 Using identifiers

Instead of defining a simple property where you could attach a keyword or a simple identifier field,
UDDI defines the notion of annotating or attaching identifiers to data. Two of the core data types
specified by UDDI provide a structure to support attaching identifiers to data. These are the
businessEntity and the tModel structures. By providing a placeholder for attaching identifiers to these
two root data types, any number of identifiers can be used for a variety of purposes.

Figure 2

In figure 2 we see that businessEntity and tModel structures both have a placeholder element named
identifierBag14. This structure is a general-purpose placeholder for any number of distinct identifiers. In
this example, we see five types of identifiers in use in a way that accommodates the kinds of searching
that might be required to locate businesses or tModels.

For instance, it is likely that someone who wants to find the types of technical Web services that are
exposed by a given business would search by a business identifier. Used in this way, identifiers can
represent business identifier types. In the example shown in figure 2, we see that the individual who
registered the businessEntity data specified a D-U-N-S� number, a Global Location Number, and a US
Tax Code identifier15.

On the other hand, since a tModel is a fairly abstract concept, I might care more that a tModel
represents an identifier, and that it was registered by a particular businessEntity. In the example in
figure 2, we have shown some more abstract identifier types and can tell that the tModel that describes
the way that Fabrikam’s purchasing Web service has been marked with information that identifies the
data as being related to the businessEntity record with the theoretical businessKey value E45. A
second identifier marks the tModel as a specification.

Two identifier types have been identified and made a core part of the UDDI Operator registries, so far.
These are the Dun & Bradstreet D-U-N-S� numbers and the Thomas Register supplier IDs16.

Identifier Name tModel name
D-U-N-S dnb-com:D-U-N-S
Thomas Register thomasregister-com:supplierID

14 The term “bag” is from the object design naming convention that places collections of like things within an outer container. From
outside, it behaves like a bag – that is has a collection of things in it. To see what’s in it, you have to look inside.
15 In the diagram, the actual name/value properties were abbreviated for the sake of simplicity.
16 See http://www.thomasregister.com.

businessEntity: Fabrikam Inc.
businessKey: E45

identifierBag

tModel: HomeGrown Purchase Order
URL: http://fabrikam.com/spec.htm

identifierBag

D-U-N-S�
GLN

US Tax Code

IsSpecification
businessKey E45

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

27

10.2.2 Structure Specification

<element name = "identifierBag">
 <complexType>
 <sequence>
 <element ref = "keyedReference" minOccurs = "0"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
</element>

From this structure definition we see that an identifier bag is an element that holds zero or more
instances of something called a keyedReference. When we look at that structure, we see:

<element name = "keyedReference">
 <complexType>
 <attribute ref = "tModelKey"/>
 <attribute ref = "keyName"/>
 <attribute ref = "keyValue" use = "required"/>
 </complexType>
</element>

Upon examining this, we see a general-purpose structure for a name-value pair, with one curious
additional reference to a tModel structure. It is this extra attribute that makes the identifier scheme
extensible by allowing tModels to be used as conceptual namespace qualifiers.

Understanding this, it then should be easy to see how the example in figure 2 functions. Assuming that
the identifiers were fully defined, the five types shown would each reference one of five different
tModels. Using the information we’ve learned already from the discussion of the tModel structure in this
document and related texts, we should then be able to see how the tModel structure is useful as a
general purpose concept registry with specific UDDI emphasis on the concepts of software
specifications, identification schemes, and as we see in The publisherAssertion structure and the next
appendix, as a way to define a general taxonomy namespace key.

The net result is that you can register a tModel to represent an idea, and then use a reference to that
tModel as part of a general discovery mechanism that allows unknown facts to be discovered and
explained.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

28

11 Appendix B: Using categorization

Categorization and the ability to voluntarily assign category information to data in the UDDI distributed
registry was a key design goal. Without categorization and the ability to specify that information be
tangentially related to some well-known industry, product or geographic categorization code set,
locating data within the UDDI registry would prove to be too difficult.

At the same time, it is impractical to assume that the UDDI registry will be useful for general-purpose
business search. With a projected near-term population of several hundred thousand to million distinct
entities, it is unlikely that searching for businesses that satisfy a particular set of criteria will yield a
manageably sized result set. For example, suppose we searched for all businesses that have classified
themselves with a particular industry code – retail. Even if we searched within this specific industry
classification, the breadth of the category makes it likely that we’ll find tens of thousands of companies
that are retailers or in some way think of themselves as belonging to a retail category.

Secondary considerations include the accuracy with which categories are applied and the exact value
match nature of the UDDI categorization facility. When you register a specific category along with your
UDDI registration data, only people searching for that exact category will find your results. For example,
in the case where one business marks itself as “retail – pet-food”, and another simply uses “retail”, the
specialization and generalization across categories of any particular categorization scheme or
taxonomy is not known to the UDDI search facility.

More intelligent search facilities are required that have some a priori knowledge of the meanings of
specific categories and that provide the ability to cross-reference across related categories. Such is the
role of more traditional search engines. The design of UDDI allows simplified forms of searching and
allows the parties that publish data about themselves, and their advertised Web services to voluntarily
provide categorization data that can be used by richer search facilities that will be created above the
UDDI technical layer.

Figure 3

In figure 3 we see the tiered search concept illustrated. The role of search portals and marketplaces will
support the business level search facilities for such activities as finding partners with products in a
certain price range or availability, or finding high quality partners with good reputations. The data in
UDDI is not sufficient to accommodate this because of the cross category issues associated with high
volumes and voluntary classification.

11.1 Structure Specification
<element name = "categoryBag">

Advanced Discovery via Portals & Marketplaces

UDDI Registries & Protocol

Marketplace

Search Portal

Marketplace
Marketplace

Search PortalBusiness
Users Technical

Users

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

29

 <complexType>
 <sequence>
 <element ref = "keyedReference" minOccurs = "0"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
</element>

From this structure definition we see that categoryBag is an element that holds zero or more instances
of keyedReference elements. This was described in the section on identifiers (Appendix A: Using
Identifiers) and the basic structure is used in the same way.

Three categorization taxonomies have been identified and made a core part of the UDDI Operator
registries, so far. These are the North American Industry Classification System (NAICS)17, Universal
Standard Products and Services Classification (UNSPSC)18, and ISO 316619, the international
standard for geographical regions, including codes for countries and first-level administrative
subdivisions of countries. A fourth category is also defined – named “Other Taxonomy” – for general-
purpose keyword type classification20.

The tModel names for these taxonomies are

Taxonomy Name tModel name
NAICS ntis-gov:naics:1997
UNSPSC unspsc-org:unspsc:3-1
ISO 3166 iso-ch:3166:1999

Other Taxonomy
uddi-
org:general_keywords

17 See http://www.census.gov/epcd/www/naics.html.
18 See http://www.unspsc.org.
19 See http://www.din.de/gremien/nas/nabd/iso3166ma.
20 Operator Sites are allowed to promote invalid category entries, or entries that are otherwise rejected by the category
classification services, to this miscellaneous taxonomy.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

30

12 Appendix C: Response message reference

All of the messages defined in the UDDI Version 2.0 API Specification return response messages upon
successful completion. These structures are defined here for reference purposes. All of the structures
shown will appear within SOAP 1.1 compliant envelope structures according to the specifications
described in the appendices for the UDDI Version 2.0 API Specification. Only the SOAP <body>
element contents are shown in the examples in this section.

12.1 assertionStatusReport
This message returns zero or more assertionStatusItem structures in response to a
get_assertionStatusReport inquiry message.

12.1.1 Sample

<assertionStatusReport generic=”2.0” operator=”uddi.someoperator” xmlns=”urn:uddi-org:api_v2”>
 <assertionStatusItem completionStatus=”status:toKey_incomplete”>
 <fromKey>F5E65…</fromKey>
 <toKey>A237B…</toKey>
 <keyedReference tModelKey=“uuid:F5E65…” keyName=”Subsidiary” keyValue=”1”
 </keyedReference>
 <keysOwned>
 <fromKey>F5E65</fromKey>
 </keysOwned>
 </assertionStatusItem>
 [<assertionStatusItem/>…]
</assertionStatusReport>

This message reports all complete and incomplete assertions and serves an administrative use
including the determination if there are any outstanding, incomplete assertions about relationships
involving businesses the publisher account is associated with.

Since the publisher who was authenticated by the get_assertionStatusReport message can manage
several businesses, the assertionStatusReport message shows the assertions made for all businesses
managed by the publisher.

While the elements fromKey, toKey and keyedReference together identify the assertion whose status is
being reported on, the keysOwned element designates those businessKeys the publisher manages.

An assertion is complete only if the completionStatus attribute says so, that is, having a value
“status:complete”. If completionStatus has a value “status:toKey_incomplete” or
“status:fromKey_incomplete”, the party who controls the businessEntity referenced by the toKey or the
fromKey has not made a matching assertion, yet. In the example we can see that the party who
controls the businessEntity with the businessKey A237B… has not made a matching assertion to the
one found in the assertionStatusItem, made by the party who controls the businessEntity with the
businessKey F5E65… .

12.2 authToken
This message returns the authentication information that should be used in subsequent calls to the
publishers API messages.

12.2.1 Sample

<authToken generic=“2.0” operator=”uddi.someoperator” xmlns=”urn:uddi-org:api_v2” >
 <authInfo>some opaque token value</authInfo>
</authToken>

The authToken message contains a single authInfo element that contains an access token that is to be

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

31

passed back in all Publisher’s API messages that change data. This message is always returned using
SSL encryption as a synchronous response to the get_authToken message.

12.3 bindingDetail
This message returns specific bindingTemplate information in response to a get_bindingDetail or
find_binding inquiry message.

12.3.1 Sample

<bindingDetail generic=“2.0” operator=”uddi.someoperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <bindingTemplate bindingKey=”F5E65…” serviceKey=”E4D6…” >
 …
 </bindingTemplate>
 [<bindingTemplate/>…]
</bindingDetail>

In this message, one or more bindingTemplate structures are returned according to the data requested
in the request message. The serviceKey attributes are always returned when bindingTemplate data is
packaged in this way. The truncated flag shown in the example indicates that not all of the requested
data was returned due to an unspecified processing limit. Ordinarily, the truncated flag is not included
unless the result set has been truncated.

12.4 businessDetail
This message returns one or more complete businessEntity structures in response to a
get_businessDetail inquiry message.

12.4.1 Sample

<businessDetail generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessEntity businessKey=”F5E65…” authorizedName=”J. Doe”
 operator=”uddi.publishingOperator” >
 …
 </businessEntity>
 [<businessEntity/>…]
</businessDetail>

In this message, we see that the businessEntity contains the proper output information (e.g.
authorizedName, and operator). The two operator attributes shown in the businessDetail element and
the businessEntity element reflect the distinguished name of the Operator Site providing the response
message and the distinguished name of the operator where the data is controlled, respectively.
Additionally, notice the name of the person who registered the data shown in the authorizedName
attribute.

12.5 businessDetailExt
This message returns one or more complete businessEntityExt structures in response to a
get_businessDetailExt inquiry message. This is the same data returned by the businessDetail
messages, but is provided for consistency with third party extensions to businessEntity information.

12.5.1 Sample

<businessDetailExt generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessEntityExt>
 <businessEntity businessKey=”F5E65…” authorizedName=”J. Doe”
 operator=”uddi.publishingOperator” >

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

32

 …
 </businessEntity>
 <businessEntityExt>
 [<businessEntityExt/>…]
</businessDetail>

The message API design allows third party registries (e.g. non-operator sites) to implement the UDDI
Version 2.0 API Specifications while at the same time extending the details collected in a way that will
not break tools that are written to UDDI specifications. Operator Sites are required to support the Ext
form of the businessDetail message for compatibility with tools, but are not allowed to manage
extended data.

12.6 businessList
This message returns zero or more businessInfo structures in response to a find_business inquiry
message. BusinessInfo structures are abbreviated versions of businessEntity data suitable for
populating lists of search results in anticipation of further “drill-down” detail inquiries.

12.6.1 Sample

<businessList generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessInfos>
 <businessInfo businessKey=”F5E65…” >
 <name>My Company</name>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 [<businessInfo/>…]
 </businessInfos>
</businessList>

This message returns overview data in the form of zero or more businessInfo structures. Each
businessInfo structure contains company name and optional description data, along with a collection
element named serviceInfos that in turn can contain one or more serviceInfo structures21. Notice that
the businessKey attribute is not expressed in the serviceInfo structure due to the fact that this
information is available from the containing businessInfo structure.

12.7 publisherAssertions
This message returns one or more publisherAssertion structures in response to a
set_publisherAssertions or a get_publisherAssertions publishing message.

12.7.1 Sample

<publisherAssertions generic=”2.0” operator=”uddi.someoperator” authorizedName=”J. Doe”
 xmlns=”urn:uddi-org:api_v2”>
 <publisherAssertion>
 <fromKey>F5E65…</fromKey>
 <toKey>A237B…</toKey>
 <keyedReference tModelKey=“uuid:34D5…” keyName=”Holding Company”
 keyValue=”parent-child”
 </keyedReference>
 </publisherAssertion>
 [<publisherAssertion/>…]
</publisherAssertions>

21 Refer to the UDDI XML schema for structure details.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

33

This message returns all assertions made by the publisher who was authenticated in the preceding
set_publisherAssertions or the get_publisherAssertions message.

12.8 registeredInfo
This message returns overview information that is suitable for identifying all businessEntity and tModel
data published by the requester. Provided as part of the Publisher’s API message set, this information
is only provided when requested via a get_registeredInfo message over an SSL connection.

12.8.1 Sample

<registeredInfo generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <businessInfos>
 <businessInfo businessKey=”F5E65…” >
 <name>My Company</name>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 [<businessInfo/>…]
 <businessInfos>
 <tModelInfos>
 <tModelInfo tModelKey=“uuid:34D5…”>
 <name>Proprietary XML purchase order</name>
 </tModelInfo>
 [<tModelInfo/>…]
 </tModelInfos>
</registeredInfo>

This message contains overview data about business and tModel information published by a given
publisher. This information is sufficient for driving tools that display lists of registered information and
then provide drill-down features. This is the recommended structure for use after a network problem
results in an unknown status of saved information.

12.9 relatedBusinessesList
This message returns zero or more relatedBusinessInfo structures in response to a
find_relatedBusinesses inquiry message.

12.9.1 Sample

<relatedBusinessesList generic=”2.0” operator=”uddi.someoperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <businessKey>F5E65…</businessKey>
 <relatedBusinessInfos>
 <relatedBusinessInfo>
 <businessKey>A237B</businessKey>
 <name>Matt’s Garage</name>
 <description>Car services in …</description>
 <sharedRelationships>
 <keyedReference tModelKey=“uuid:F5E65…”
keyName=”Subsidiary”
 keyValue=”1”
 </keyedReference>
 [<keyedReference/>…]
 </sharedRelationships>
 </relatedBusinessInfo>
 [<relatedBusinessInfo/>…]
 </relatedBusinessInfos>

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

34

</relatedBusinessesList>

For the businessEntity specified in the find_relatedBusinesses, this structure reports complete business
relationships with other businessEntity registrations. Business relationships are complete between two
businessEntity registrations when the publishers controlling each of the businessEntity structures
involved in the relationship set assertions affirming that relationship.

Each relatedBusinessInfo structure contains information about a businessEntity that relates to the
specified businessEntity by at least one relationship. This information about the related businessEntity
comprises its businessKey, name and optional description data, along with a collection element named
sharedRelationships that in turn can contain zero or more keyedReference elements. These
keyedReference elements, together with the businessKey elements for specified and the related
businessEntity represent the complete relationships, that is, matching publisher assertions made by the
publishers for each businessEntity.

12.10 serviceDetail
This message returns one or more complete businessService structures in response to a
get_serviceDetail inquiry message.

12.10.1 Sample

<serviceDetail generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <businessService businessKey=”F5E65…” serviceKey=”3D21…”>
 …
 </businessService>
 [<businessService/>…]
</serviceDetail>

One can use serviceDetail messages to get complete descriptive and technical details about registered
services by providing one or more serviceKey values in the get_serviceDetail message. Notice that the
businessKey value is expressed in this message because the container does not provide a link to the
parent businessEntity structure.

12.11 serviceList
This message returns zero or more serviceInfo structures in response to a find_service inquiry
message.

12.11.1 Sample

<serviceList generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…” businessKey=”2E4C…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

ServiceInfo structures are abbreviated versions of businessService data, suitable for populating a list of
services associated with a business and that match a pattern as specified in the inputs to the
find_service message. Notice that the businessKey attribute is expressed in the serviceInfo elements
found in this message. This is because this information is not available from a containing element.

12.12 tModelDetail
This message returns one or more complete tModel structures in response to a get_tModelDetail

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

35

inquiry message.

12.12.1 Sample

<tModelDetail generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <tModel tModelKey=“uuid:F5E65…” authorizedName=”J. Doe”
operator=”uddi.publishingOperator” >
 …
 </tModel>
 [<tModel/>…]
</tModelDetail>

Because tModel structures are top-level data (that is, stand alone with no parent containers) the
authorizedName value is expressed. This is the name of the person whose account was used to
register the data. The two operator attributes each express the distinguished name of the Operator Site
that is providing the data and the operator where the data is managed.

12.13 tModelList
This message returns zero or more tModelInfo structures in response to a find_tModel inquiry
message.

12.13.1 Sample

<tModelList generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”
 xmlns=”urn:uddi-org:api_v2”>
 <tModelInfos>
 <tModelInfo tModelKey=“uuid:34D5…”>
 <name>Proprietary XML purchase order</name>
 </tModelInfo>
 [<tModelInfo/>…]
 </tModelInfos>
</tModelList>

The tModelInfo structures are abbreviated versions of tModel data, suitable for finding candidate
tModels, populating lists of results and then providing drill-down features that rely on the get_xxDetail
messages.

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

36

13 Appendix D: Data Field Lengths

The following table summarizes all known stored element and attribute names based on the names of
the fields defined in the XML schema. These are the storage length limits for information that is saved
in the UDDI registry, given in Unicode characters. The Operator Sites will truncate data that exceeds
these lengths. Fields that are generated by the Operator site (ignored on input) are not listed. Keys are
listed even though they are generated. Since keys are referenced by other structures, they are shown
here.

Field Name Length
accessPoint 255
addressLine 80
authInfo 4096
authorizedName 255
bindingKey 41
businessKey 41
description 255
discoveryURL 255
email 255
fromKey 41
hostingRedirector 41
instanceParms 255
keyName 255
keyType 16
keyValue 255
name 255
overviewURL 255
personName 255
phone 50
serviceKey 41
sortCode 10
tModelKey 255
toKey 41
uploadRegister 255
URLType 16
useType 255

UDDI Version 2 Data Structure Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

37

14 Appendix E: Structured Address Example

The address structure, contained in the businessEntity structure, contains a simple list of addressLine
elements. While this is useful for publishing addresses in a UDDI registry or simply printing them on
paper, the address’ structure and meaning remains hidden for a given businessEntity. For this reason,
address structures can be adorned virtually with keyedReference elements. In fact a tModelKey
attribute can be provided for an address structure and keyName keyValue attribute pairs can be
provided for each addressLine element. This example is provided to demonstrate how the application
of tModelKey, keyName and keyValue attributes to address structures can be used to give structure
and meaning to a given address.

Let us assume that a community of several country-specific postal agencies, called “IBCPA”, not
existing in reality, agreed on a core set of address components for exchanging data electronically. This
set currently comprises the components Street, Street number, Postal code, City, District, Region and
Country.

In order to make these address components available for their use in UDDI address structures, IBCPA
assigns a unique value (10, 20, ..., 70) to each address component and publishes a tModel with a
save_tModel message call that contains a tModel structure in the following form.

<tModel>
 <name>IBCPA.org:address:1.0</name>
 <description xml:lang=”en”>Codes for Address Components defined by the International
 Board of Postal Agencies</description>
 <overviewDoc>http://www.ibcpa.org/address/codes.html</overviewDoc>
 …
</tModel>

IBCPA gets back the tModelKey A548…. As a result, the IBCPA set of address components can now
be used by every publisher to structure their addresses in businessEntity structures. The following
example shows an address structure using the IBCPA tModel in a save_business message call.

<address useType=”Sales office” tModelKey=“uuid:A548…”>
 <addressLine keyName=”Street” keyValue=”10”>Alexanderplatz</addressLine>
 <addressLine keyName=”Street number” keyValue=”20”>12</addressLine>
 …
 <addressLine keyName=”Country” keyValue=”70”>Deutschland</addressLine>
</address>

	Terminology
	Introduction
	Service Discovery
	Five data types

	Overall Design Principles
	Unique identifiers
	Containment

	Data Structure Notation
	The businessEntity structure
	Structure specification
	Substructure breakdown
	discoveryURLs
	discoveryURL

	name
	contacts
	contact
	address
	addressLine

	businessServices
	identifierBag
	categoryBag

	The businessService structure
	Structure Specification
	Substructure Breakdown
	bindingTemplates

	The bindingTemplate structure
	
	accessPoint
	hostingRedirector
	tModelInstanceDetails
	tModelInstanceInfo
	instanceDetails
	overviewDoc

	The tModel structure
	
	Defining the technical fingerprint
	Defining an abstract namespace reference

	The publisherAssertion structure
	Structure Specification
	Substructure Breakdown

	Appendix A: Using Identifiers
	
	Using identifiers
	Structure Specification

	Appendix B: Using categorization
	Structure Specification

	Appendix C: Response message reference
	assertionStatusReport
	Sample

	authToken
	Sample

	bindingDetail
	Sample

	businessDetail
	Sample

	businessDetailExt
	Sample

	businessList
	Sample

	publisherAssertions
	Sample

	registeredInfo
	Sample

	relatedBusinessesList
	Sample

	serviceDetail
	Sample

	serviceList
	Sample

	tModelDetail
	Sample

	tModelList
	Sample

	Appendix D: Data Field Lengths
	Appendix E: Structured Address Example

